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Properties of Metastable Ising Models 
Evolving under the Swendsen-Wang Dynamics 
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The behavior of the metastable nearest neighbor Ising model governed by 
Swendsen-Wang dynamics (SW) is investigated in d= 2. The results are com- 
pared to those obtained in standard Metropolis dynamics. Both the SW and 
Metropolis systems are observed to decay from the metastable state via the 
formation of nucleating droplets. Nucleation rates are measured and found to 
agree with those predicted by classical nucleation theory. The growth rates of 
the droplets are observed to differ between the two dynamics, In addition, the 
dynamic critical exponent z is measured in a mean-field (Curie-Weiss) 
metastable Ising model at the spinodal. It is found that for SW dynamics, z = 2. 
Since this is the same value as that obtained in the Metropolis case, this result 
shows that SW does not change the dynamical universality class at the spinodal. 

KEY WORDS: Nucleation; metastability; Ising model;  Metropolis; 
Swendsen-Wang; spinodal point; critical dynamics. 

1. I N T R O D U C T I O N  

Recently Swendsen and  W a n g  proposed a new dynamics  (SW) for 

Ising-like systems (~) which has several novel features. One  of these which is 
part icularly interest ing and  potent ial ly useful is that the value of the 
dynamic  critical exponent  z is reduced. In  fact, due to the nonlocal  na ture  
of the dynamics,  z is found to be smaller than  the lower b o u n d  7/v 
calculated by Kawasaki  for local dynamics/2)  

As is the case with local dynamics,  SW obeys detailed balance. This 
condi t ion  ensures that  a given dynamics  will sample states i n accordance 
with the the rmodynamic  equi l ibr ium distr ibution.  (3) However,  the correla- 
t ion between successive configurat ions as a funct ion of their separat ion in 
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time is, to a certain degree, arbitrary. This allows the value of z, for exam- 
ple, to vary according to the particular dynamics. A natural question which 
arises is the following: How much of a constraint does the requirement of 
detailed balance impose upon the dynamic evolution of the system? This is 
interesting for both the equilibrium and nonequilibrium cases. One would 
like to know whether different types of dynamics cause the system to take 
statistically dissimilar paths in phase space, how the growth rates of 
distinct features differ, and whether or not these features even have the 
same structure. 

Because it is in many important respects different than conventional 
dynamics, SW is a good system in which to study these questions. Already 
there has been some work in this area. Meyer-Ortmanns and Trappenberg 
investigated the behavior of finite Ising systems below Tc with no external 
field. (4) They found that the flipping rate (i.e., the average time for the 
magnetization to reverse its sign when the spanning cluster is held fixed) 
under SW dynamics had a behavior different from that of Metropolis. In 
addition, Burkitt and Heerman investigated continuous ordering under 
rapid quenching with Ising models governed by SW dynamics. (5) 

In this paper, the evolution of metastable Ising systems under SW 
dynamics is investigated. The metastable state is good to work with since 
it gives both quasiequilibrium (formation of nucleating droplets) and non- 
equilibrium (growth of droplets) phenomena. Also, the theory of nucleation 
is understood reasonably well, so that the results can be compared to 
theoretical relations for nucleation rates and Metropolis data. 

In addition, the metastable Ising system is used to test the lower 
bound c@ for the dynamic critical exponent z calculated by Li and Sokal 
for SW dynamics. (6) This relation has been found to hold for Ising models 
at the critical point, where it differs considerably from the lower bound on 
z for local dynamics calculated by Kawasaki (V/v). (2) However, at the 
spinodal or limit of metastability for a mean-field Ising model, both of 
these lower bounds are equal to the value 2. This is also the exact value for 
standard Metropolis dynamics. If the above bound is correct, SW dynamics 
does not reduce the value of z from that of Metropolis at the spinodal. 
Simulation of a Curie-Weiss Ising model, where all pairs of spins interact 
with equal strength, indicates z is indeed not reduced. 

2. I M P L E M E N T A T I O N  OF SW IN THE METASTABLE 
ISING M O D E L  

The Ising models simulated in this work are governed by the usual 
Hamiltonian: 

,~r = -de ~ s ~ s j - H ~  s~ (1) 
( 0 )  i 
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Here f > 0, so that all the system is ferromagnetic. The spins si have the 
values _+ 1. The first term is a sum over all Pairs of interacting spins. The 
second term is the energy due to the coupling between all spins and the 
external field H. The external field is constant with respect to the position 
on the lattice of si and of the time. 

For temperatures less than Tc with the external field set to zero, the 
Ising system has two degenerate ground states. Under a naive implementa- 
tion of SW dynamics, the system will flip between these two states. This is 
because the spanning cluster of spins, which corresponds to the instan- 
taneous magnetization, will be flipped with a probability of 1/2 during 
every SW step. In several different papers, it has been noted that the system 
will correctly sample one of the ground states if the spanning cluster is held 
fixed in one orientation. (4'7'8) Detailed balance ensures that configurations 
where the majority of spins point in the particular direction chosen will be 
sampled according to the equilibrium distribution. All thermodynamic 
quantities will therefore be correct. Surface tension between the two phases 
guarantees that an infinite system will remain in the chosen ground state. 

Suppose that the field is increased to a small positive value and that 
the temperature remains fixed ( T <  To). One of the former ground states 
having a bulk magnetization with the same sign as the external field will 
become the equilibrium state. The other, where the bulk magnetization has 
a sign opposite to the external field, will become the metastable state. If the 
spanning cluster of spins is held fixed (opposed to the external field), the 
system should initially relax into the metastable state. 

Following the above line of thinking, the SW dynamics is modified 
according to the following procedure: 

1. Initialize the system so that all spins are opposed to the external 
field. 

2. Between all pairs of interacting spins with the same orientation, 
place bonds with probability Pb = 1 - e  -2~f. 

3. Between every spin which is aligned with the external field and the 
ghost spin, place bonds with probability pg= 1 - e  -2t~H. (The 
ghost spin is an auxiliary spin aligned with the external field.) 

4. Flip all clusters of spins not connected to the ghost spin with 50 % 
probability except for the spanning cluster, which must remain 
opposed to the external field. 

Step 1 is done in order to allow the system to relax into metastable 
configurations; in the equilibrium implementation of SW dynamics one 
could also start with this initial condition. Steps 2 and 3 along the non- 
italicized portion of step 4 are the standard ones used for an Ising model 
with an external field and are described elsewhere. (~,9) The only modifica- 
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tion is the last part of step 4; rather than flipping the spanning cluster with 
50 % probability, it is kept fixed. 

The above procedure is justified by recalling that the metastable state 
is in quasiequilibrium; i.e., it exists for time which is long enough so that 
bulk properties can be measured with a reasonable degree of accuracy. 
Although this idea is difficult to define mathematically, it is commonly 
realized in real experiments and in simulations. As long as the system 
remains in the metastable state, it will sample configurations according to 
their weight in the partition sum. This means that any dynamics which 
obeys detailed balance, in addition to giving the correct equilibrium 
properties, will also give the correct quasiequilibrium properties for the 
metastable state. This has been observed in different simulations using 
several local dynamics (1~ 12~ and it is also expected for SW dynamics. To 
confirm this conjecture, the quasistatic energy and magnetization were 
measured in the metastable SW system and compared to those obtained 
from standard Metropolis. Both dynamics gave values which were identical 
up to four significant figures. 

This procedure was used to study a two-dimensional nearest-neighbor 
Ising model and a mean-field Ising model (i.e., all pairs of spins interact 
with equal strength). In the d-- 2 case, the simulations were run on a Con- 
nection Machine (Thinking Machines, Inc.) located at Boston University. 
This device is an "SIMD" (Single Instruction Multiple Data) computer 
nominally containing 64K processing units. The processors are connected 
together in hardware by means of a hypercube geometry, but they can be 
configured in the software to form a square lattice of arbitrary size. The 
Ising systems consisted of 256 x 256 spins and ran on 8K or 16K of the 
processors. The parallel algorithm used to determine the connectivity of the 
clusters will be described elsewhere. (~3~ It should be possible to adapt this 
algorithm to vector machines. The entire program, although quite sufficient 
for our purposes, is not impressively fast (5 ~sec per spin). However, 
with appropriate "fine tuning" of the parameters, much improvement is 
expected. 

The mean-field system was run on an IBM 3090 at Boston University, 
and on a Sun workstation at KFA Jiilich, West Germany. The algorithm 
used was a slightly modified version of the one described in previous 
work.(8) 

3. RESULTS A N D  D ISCUSSION 

3.1. Nearest -Neighbor  d =  2 Ising Model  

Under both Metropolis and SW dynamics, this system was observed 
to decay from the metastable state via the formation of nucleating droplets. 
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For the sake of completeness, a brief discussion of the features of nuclea- 
tion theory relevant to the present work follows. 

In both experiments and simulations, metastable systems are found to 
decay to equilibrium by means of the phenomenon of nucleation. (14) In a 
homogeneous system, this can qualitatively be described as the formation 
of centers of the stable phase due to spontaneous fluctuations of the 
metastable background. These centers, called nucleating droplets, proceed 
to grow and take the system to equilibrium. 

One of the quantities which is of theoretical interest in the field of 
metastability is the nucleation rate J. This quantity is defined to be the 
number of nucleating droplets formed per unit time per unit volume. The 
phenomenological droplet model of Becker and D6ring (see ref. 14) has 
been found to give results for J which agree quite well with simulations. (t~ 
Other work has shown that this model becomes exact as one approaches 
the coexistence curve (H=  0) as long as the temperature is kept fixed. (~5~ 
The predicted dependence of J according to the droplet model in d dimen- 
sions is 

J =  PkPse c/H~-~ (2) 

Here, d is the dimension of space and c is a constant which depends upon 
the temperature and the surface tension between the phases. The two 
prefactors Pk and P~ also depend upon these variables and upon the exter- 
nal field H. They are referred to as the kinetic and static prefactors, respec- 
tively. The static prefactor Ps depends upon the averaged properties of the 
metastable state, whereas the kinetic prefactor Pk is governed by the 
dynamics. Usually the dependence of J on H is dominated by the exponen- 
tial for small enough H. 

The d = 2  Ising model was run both with Metropolis and SW 
dynamics. Two temperatures were chosen. One of these was far below the 
critical point (T=0.59Tc) and the other was chosen to be quite close 
(T= 0.975Tc). At both values of the temperature, nucleation was observed 
in the SW metastable system as well as the Metropolis system. 
Qualitatively, the nucleating droplets in both dynamics appeared to have 
the same structure, although the nucleation rates were much different. The 
nonequilibrium growth of the droplets after their formation was also found 
to be quite different. 

In order to measure the nucleation rates, the metastable systems were 
first run at each value of the field in order to determine a good criterion 
for the size and time of formation of nucleating droplets. Next, according 
to the criterion, the system was run for a set number of time steps and then 
stopped. The nucleating droplets were then counted. Finally, the nucleation 
rate J was determined by dividing the number of nucleating droplets by the 
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number of time steps and by the system size. Each data point was averaged 
over at least 15 such runs. Although this procedure is somewhat subjective, 
the J values were found to be reasonably insensitive to the actual criterion 
for the range of H displayed in the plots. However, when the external field 
was too large, it was difficult to establish a criterion, since no metastable 
state could clearly be defined and even very small clusters of spins aligned 
with H grew rapidly. 

The nucleation rate results are shown in Fig. 1 (T=0.59T~.) and in 
Fig. 2 ( T =  0.975Tc) for both Metropolis and SW dynamics. The J values 
are graphed against J:/H on semilog plots. According to Eq. (2), these 
plots should give straight lines if the behavior is dominated by the 
exponential. For both temperatures the two dynamics give reasonably 
straight lines when H is small. The slope at 0.59T c agrees fairly well with 
what classical nucleation theory predicts. At each temperature the linear 
regions are roughly parallel for both dynamics. This indicates that the sur- 
face tension between the two phases is independent of the dynamics, which 
is an expected result, since the surface tension is a thermodynamically 
averaged quantity. The data close to T, in Fig. 2 have a slope which is 
much less than that of Fig. 1. This is consistent with the fact that the 
surface tension should vanish at Tc. 

It appears that SW dynamics gives data which are consistent with the 
droplet model. Since the exponential dependence of the nucleation rate on 
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Fig. 1. Nucleation rate versus J/H for SW (squares) and Metropolis (circles) dynamics at 
T= 0.59Tc. 
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Fig. 2. Nucleation rate versus J/H for SW (squares) and Metropolis (circles) dynamics at 
T= 0.975T~. 

the field and the static prefactor Ps depend only on thermodynamically 
averaged properties, this is a reasonable result. The difference between SW 
and Metropolis should occur in the kinetic prefactor Pk, since this is the 
part of the nucleation rate which depends upon the dynamics. Figures 1 
and 2 show that the behavior of Pk for SW dynamics is much different 
than Metropolis. At T=0.975T~. the nucleation rate for SW is greater 
than Metropolis (Jsw > JM), while at T =  0.59Tc it is smaller (Jsw < JM). 
Qualitatively, this occurs because SW clusters become increasingly larger 
near To. The nonlocal nature of the dynamics allows all of the spins in a 
single large cluster to align with the external field at once, whereas 
Metropolis can only flip individual spins. When two or more of these 
clusters which border one another align with H, their composite mass is 
large enough so that the probability of their being connected to the ghost 
spin (i.e., remaining aligned with H) is close to unity. At temperatures far 
below To, the SW clusters are small and the dynamics is effectively local. 
The only large cluster is the spanning cluster which forms the metastable 
background. 

Once nucleating droplets have formed, they grow in a highly non- 
equilibrium manner. The growth properties depend strongly upon the 
dynamics and the temperature. Near Tc, the SW droplets grow rapidly, 
since large clusters of spins the size of the correlation length may be added 
in one time step. Metropolis, on the other hand, grows one spin at a time, 
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so that when the correlation length is much larger than the lattice spacing, 
it is significantly probable that the spin near the border of a nucleating 
droplet will not remain aligned with the external field. Far from T,, the SW 
droplets grow very slowly. Since the bond probability is close to unity, it 
takes a long time for a spin on the border of a droplet which is not aligned 
with H to become detached from the spanning cluster and become part of 
the droplet. However, in the Metropolis dynamics, it is very probable for 
a spin just outside a droplet to become aligned with the external field; 
accordingly, the droplets grow rapidly. 

3.2. The Mean-F ie ld  Metastab le  Ising Model  (Cur ie -Weiss)  

In this system, all pairs of spins interact ferromagnetically and with 
equal strength. Because every spin is a nearest neighbor of all others, there 
is no geometrical measure of length. This means that it is impossible for 
interesting local entities, like nucleating droplets, to form. However, the 
system is still useful for studying properties of the spinodal, which is the 
sharp boundary between the metastable and unstable regimes. In previous 
work, the spinodal has been shown to behave like a critical point in the 
mean-field approximation. (~2) 

One of the characteristics of the spinodal is that it exhibits the 
phenomenon of critical slowing down. Autocorrelation functions of bulk 
quantities are expected to be governed by the slowest mode according to 
the exponential e-t/L The value of ~ diverges at the spinodal as a power 
law, and a dynamic critical exponent z can be defined in the usual manner: 

~~~z (3) 

Here v is the relaxation time for the slowest mode and ~ is the correlation 
length. For this system, r is defined through the exponent v as 

~ ( A H )  v (4) 

where A H  is the reduced distance to the spinodal. The temperature is held 
fixed. 

Recently, Li and Sokal calculated a lower bound for z in SW 
dynamics. ~6) They found Zsw>>.~/v. This bound has been determined to 
hold at the Ising critical point in several different dimensions as well as in 
the Curie-Weiss system. The spinodal in the Curie-Weiss Ising model is a 
good test for this bound, since ~/v = 2, which is the same value as that 
obtained from Metropolis dynamics. If the bound holds in this case, it 
implies that SW dynamics does not reduce the dynamic critical exponent 
from that of Metropolis at the spinodal. 
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The longest decay mode was measured at the spinodal using the 
autocorrelation function for the magnetization A(t): 

A(t) = (m( t  + t') m(t') > c -  <m(t') > 2, (5) 

for a system of N =  10 4 spins. The averages were taken over 60,000 SW 
steps. The system always remained in the metastable state during this time, 
so that these averages were over metastable configurations. Each value of 
r was determined from a linear fit of A(t) to t on a semilog plot. (16) 

In Fig. 3, the data for ~ are shown as a function of AH on a log-log 
plot. The rapid initial rise for AH close to 1 is typical for quantities 
measured at the spinodal. At small AH, the curve is approaching 
asymptotic power-law behavior. According to Eqs. (3) and (4), the 
asymptotic slope should have the value - v z .  Since v = 1/4 for the spinodal, 
the slope should be equal to - 1 / 2  if Zsw = 2. The dashed line on the plot 
has the expected slope and is in close agreement with the last few data 
points. 

From a geometrical point of view this result is reasonable because the 
connectedness length of the clusters does not diverge at the spinodal. The 
success of recent algorithms like SW in accelerating the dynamics seems to 
be based on the proper matching between the connectedness length in the 
embedded percolation problem and the correlation length in the thermal 
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Fig. 3. Autocorrelation data for the magnetization near the spinodal. The dashed line has 
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problem. (17'18) Since at the spinodal the percolation clusters are finite 
while the correlation length diverges, the SW dynamics is effectively local 
(This mismatch of lengths at the spinodal has recently been reported by 
Coniglio et  aL~ 

4. C O N C L U S I O N S  

The d=  2 metastable Ising model has been observed to decay from the 
metastable state via the formation of nucleating droplets. Differences 
between SW and Metropolis dynamics have been observed in the growth 
and formation of droplets, but not in their structure. The nucleation rates 
have been compared to those predicted by the droplet model of Becker and 
D6ring and have been found to agree fairly well for small values of the 
external field. The nucleation rates for SW are smaller than Metropolis at 
T= 0.59Tc and larger than Metropolis at T=0.975T c. This is thought to 
be a consequence of the nonlocal nature of SW dynamics near To. 

It appears that all properties which are functions of equilibrium or 
quasiequilibrium bulk quantities are the same in both SW and Metropolis. 
This includes surface tension between the metastable phase and the 
droplets and the exponential dependence of nucleation rates on the external 
field. Since the condition of detailed balance guarantees all of these proper- 
ties to be independent of the dynamics, this is not unexpected. The non- 
equilibrium growth phenomena, while different in SW and Metropolis with 
respect to actual rates, shares the same qualitative behavior. There is no 
evidence observed as radical as, for example, the existence of a spinodal 
line in the d = 2 system. A more detailed paper on these effects in d = 3 will 
be published shortly. 

The Curie-Weiss simulations near the spinodal give evidence that 
Zsw = 2, which is consistent with the lower bound calculated by Li and 
Sokal. This is thought to result from the fact that although the Ising 
correlation length diverges at the spinodal, the percolation connectedness 
length does not. 
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